A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death

Abstract
Surface‐exposed calreticulin (ecto‐CRT) and secreted ATP are crucial damage‐associated molecular patterns (DAMPs) for immunogenic apoptosis. Inducers of immunogenic apoptosis rely on an endoplasmic reticulum (ER)‐based (reactive oxygen species (ROS)‐regulated) pathway for ecto‐CRT induction, but the ATP secretion pathway is unknown. We found that after photodynamic therapy (PDT), which generates ROS‐mediated ER stress, dying cancer cells undergo immunogenic apoptosis characterized by phenotypic maturation (CD80high, CD83high, CD86high, MHC‐IIhigh) and functional stimulation (NOhigh, IL‐10absent, IL‐1βhigh) of dendritic cells as well as induction of a protective antitumour immune response. Intriguingly, early after PDT the cancer cells displayed ecto‐CRT and secreted ATP before exhibiting biochemical signatures of apoptosis, through overlapping PERK‐orchestrated pathways that require a functional secretory pathway and phosphoinositide 3‐kinase (PI3K)‐mediated plasma membrane/extracellular trafficking. Interestingly, eIF2α phosphorylation and caspase‐8 signalling are dispensable for this ecto‐CRT exposure. We also identified LRP1/CD91 as the surface docking site for ecto‐CRT and found that depletion of PERK, PI3K p110α and LRP1 but not caspase‐8 reduced the immunogenicity of the cancer cells. These results unravel a novel PERK‐dependent subroutine for the early and simultaneous emission of two critical DAMPs following ROS‐mediated ER stress. There is a [Have you seen?][1] (March 2012) associated with this Article. [1]: http://dx.doi.org/10.1038/emboj.2012.2