Comparison of Hyperelastic Models for Rubber-Like Materials

Abstract
The present paper proposes a thorough comparison of twenty hyperelastic models for rubber-like materials. The ability of these models to reproduce different types of loading conditions is analyzed thanks to two classical sets of experimental data. Both material parameters and the stretch range of validity of each model are determined by an efficient fitting procedure. Then, a ranking of these twenty models is established, highlighting new efficient constitutive equations that could advantageously replace well-known models, which are widely used by engineers for finite element simulation of rubber parts.

This publication has 4 references indexed in Scilit: