The physics of paper

Abstract
Paper is a material known to everybody. It has a network structure consisting of wood fibres that can be mimicked by cooking a portion of spaghetti and pouring it on a plate, to form a planar assembly of fibres that lie roughly horizontal. Real paper also contains other constituents added for technical purposes. This review has two main lines of thought. First, in the introductory part, we consider the physics that one encounters when 'using' paper, an everyday material that exhibits the presence of disorder. Questions arise, for instance, as to why some papers are opaque and others translucent, some are sturdy and others sloppy, some readily absorb drops of liquid while others resist the penetration of water. The mechanical and rheological properties of paper and paperboard are also interesting. They are inherently dependent on moisture content. In humid conditions paper is ductile and soft, in dry conditions brittle and hard. In the second part we explain in more detail research problems concerned with paper. We start with paper structure. Paper is made by dewatering a suspension of fibres starting from very low content of solids. The processes of aggregation, sedimentation and clustering are familiar from statistical mechanics. Statistical growth models or packing models can simulate paper formation well and teach a lot about its structure. The second research area that we consider is the elastic and viscoelastic properties and fracture of paper and paperboard. This has traditionally been the strongest area of paper physics. There are many similarities to, but also important differences from, composite materials. Paper has proved to be convenient test material for new theories in statistical fracture mechanics. Polymer physics and memory effects are encountered when studying creep and stress relaxation in paper. Water is a 'softener' of paper. In humid conditions, the creep rate of paper is much higher than in dry conditions. The third among our topics is the interaction of paper with water. The penetration of water into paper is an interesting transport problem because wood fibres are hygroscopic and swell with water intake. The porous fibre network medium changes as the water first penetrates into the pore space between the fibres and then into the fibres. This is an area where relatively little systematic research has been done. Finally, we summarize our thoughts on paper physics. (Some figures in this article are in colour only in the electronic version)

This publication has 114 references indexed in Scilit: