Abstract
A new capillary electrophoresis/mass spectrometry technique is introduced for attomole detection of primary amines (including several neurotransmitters), amino acids, and their d/l enantiomers in one run through the use of a complexation reagent while using only ∼1 nL of sample. The technique uses underivatized amino acids in conjunction with an underivatized capillary, which significantly reduces cost and analysis time. It was found that when (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TCA, MW 440) was used as the background electrolyte/complexation reagent during the capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) analysis of underivatized amino acids, stable complexes were formed between the amino acids and the 18-C-6-TCA molecules. These complexes, which exhibited high ionization efficiencies, were detectable at attomole levels for most amino acids. The detection limits of the AA/18-C-6-TCA complexes were on the average more than 2 orders of magnitude lower than that of the free amino acids in solution. In addition to lower detection limits under CE/ESI-MS, a solution of 18-C-6-TCA in the concentration range of 5−30 mM provided high separation efficiency for mixtures of l-amino acids as well as mixtures of d/l-amino acids. By using a solution of 18-C-6-TCA as the background electrolyte in conjunction with an underivatized, 130-cm-long, 20-μm−i.d., 150-μm−o.d. fused-silica capillary and by monitoring the m/z range of the amino acid/18-C-6-TCA complexes (m/z 515−700), most of the standard amino acids and many of their enantiomers were separated and detected with high separation efficiency and high sensitivity (nanomolar concentration detection limits) in one run. The solutions of 18-C-6-TCA also worked well as the CE/ESI-MS BGE for low-level detection of several neurotransmitters and some of their d/l enantiomers as well as for the analysis of amino acids at endogenous levels in lysed red blood cells.

This publication has 13 references indexed in Scilit: