Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model

Abstract
Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine. Pharmaceutical science is only beginning to scratch the surface on the exact mechanisms of drug action that lead to a drug's breadth of patient responses, both intended and side effects. Decades of clinical trials, molecular studies, and more recent computational analysis have sought to characterize the interactions between a drug and the cell's molecular machinery. We have devised an integrated computational approach to assess how a drug may affect a particular system, in our study the metabolism of the human kidney, and its capacity for filtration of the contents of the blood. We applied this approach to retrospectively investigate potential causal drug targets leading to increased blood pressure in participants of clinical trials for the drug torcetrapib in an effort to display how our approach could be directly useful in the drug development process. Our results suggest specific metabolic enzymes that may be directly responsible for the side effect. The drug screening framework we have developed could be used to link adverse side effects to particular drug targets, discover new uses for old drugs, identify biomarkers for metabolic disease and drug response, and suggest genetic or dietary risk factors to help guide personalized patient care.

This publication has 86 references indexed in Scilit: