Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light

Abstract
The In2S3/(Pt-TiO2) nanocomposite photocatalyst consisting of floriated In2S3 decorated with TiO2 nanoparticles was synthesized by a multi-step method, which was used for the hydrogen production under visible-light (λ ≥ 420 nm) irradiation. The obtained In2S3/(Pt-TiO2) nanocomposite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption spectra (DRS), and photoluminescence spectra (PL). It is found that the Pt-TiO2nanoparticles embedded in the interstices of the floriated In2S3 formed intimate contacts between the In2S3 and Pt-TiO2, which is a benefit to significantly enhance the charge separation and then the photocatalytic activity. The effects of the mass ratio in the In2S3/(Pt-TiO2) nanocomposites and Pt-loaded amount on the photoactivity for the hydrogen production were investigated comparatively. The results show that the In2S3/(Pt-TiO2) nanocomposite with a mass ratio of 3:2 has the maximum photocatalytic hydrogen production rate of 135 μmol h−1 under visible-light irradiation, and the possible mechanism of the obtained In2S3/(Pt-TiO2) nanocomposite as a photocatalyst for hydrogen production was proposed.