A Neural Network Degradation Model for Computing and Updating Residual Life Distributions

Abstract
The ability to accurately estimate the residual life of partially degraded components is arguably the most challenging problem in prognostic condition monitoring. This paper focuses on the development of a neural network-based degradation model that utilizes condition-based sensory signals to compute and continuously update residual life distributions of partially degraded components. Initial predicted failure times are estimated through trained neural networks using real-time sensory signals. These estimates are used to derive a prior failure time distribution for the component that is being monitored. Subsequent failure time estimates are then utilized to update the prior distributions using a Bayesian approach. The proposed methodology is tested using real world vibration-based degradation signals from rolling contact thrust bearings. The proposed methodology performed favorably when compared to other reliability-based and statistical-based benchmarks.

This publication has 24 references indexed in Scilit: