Abstract
A novel amphiphilic ABA dendritic-linear-dendritic block copolymer consisting of poly(amidoamine) and poly(propylene oxide) has been synthesized. The solution-phase behavior of the block copolymer was studied as a function of the generation of the dendritic block, ionic strength, and solution pH. The triblock self-assembles in aqueous media to form stable micelles with CMC values ranging from 10-6 to 10-5 M. Dynamic light scattering results indicate the formation of particles ranging from 9 to 18 nm in diameter, with smaller diameters exhibited at higher generations. Additional experiments were performed to assess the feasibility of the nanoparticles for drug delivery applications. Drug loading studies were performed with a model hydrophobic drug, triclosan, resulting in high loading efficiencies ranging from 79 to 86%w/w. The dendritic-linear-dendritic block copolymer synthesized was found to be a promising candidate for drug delivery due to its relative stability in aqueous solution and its drug encapsulation and release properties.