The requirements for conjugal DNA synthesis in the donor strain during Flac transfer

Abstract
Although neither rifampicin nor spectinomycin had any effect on the frequency of Flac transfer by a sensitive donor, rifampicin but not spectinomycin prevented donor conjugal DNA synthesis as measured in matings between a dnaB donor and a tdk recipient. An untranslated RNA species is therefore probably required for this synthesis, although transfer took place even in its absence. Donor conjugal DNA synthesis was abolished in a dnaE donor, showing that DNA polymerase III is responsible for this process; again, plasmid DNA transfer was not affected. Flac mutants lacking the F pilus gave neither donor conjugal DNA synthesis nor plasmid DNA transfer, probably because they could not receive a “mating signal” to activate the transfer process. The products of traI and traM were also required both for donor conjugal DNA synthesis and for physical transfer of plasmid DNA, probably being involved in the conversion of covalently closed circular plasmid DNA into the open circular form that is the substrate for the independent although normally simultaneous synthesis and transfer steps. In contrast, donor conjugal DNA synthesis took place at a normal rate in both piliated traG and traN mutants, and at a reduced rate in traD mutants, although in no case was there physical transfer of plasmid DNA. These gene products are therefore required for DNA transfer to the recipient, and in addition, the absence of the traD product may hinder DNA synthesis. Based upon these results, a scheme for the processing of DNA during conjugation is presented.