Genetic and statistical properties of residual feed intake

Abstract
Residual feed intake is defined as the difference between actual feed intake and that predicted on the basis of requirements for production and maintenance of body weight. Formulas were developed to obtain genetic parameters of residual feed intake from knowledge of the genetic and phenotypic parameters of the component traits. Genetic parameters of residual feed intake were determined for a range of heritabilities (h2 = .1, .3, or . 5 ) for component traits of feed intake and production, and genetic (rg = .1, .5, or .9) and environmental (re = .1, .5, or .9) correlations between them. Resulting heritability of residual feed intake ranged from .03 to .84 and the genetic correlation between residual feed intake and production ranged from −.90 to .87. Heritability of residual feed intake depends considerably on the environmental correlation between feed intake and production. Residual feed intake based on phenotypic regression of feed intake on production usually contains a genetic component due to production. Residual feed intake based on genotypic regression of feed intake on production is genetically independent of production and its use is equivalent to use of a selection index restricted to hold production constant. Multiple-trait selection on residual feed intake, based on either phenotypic or genetic regressions, and production is equivalent to multiple-trait selection on feed intake and production. Residual energy intake in dairy cattle was examined as an example. Heritability of residual energy intake based on genotypic regression was close to zero and indicated that measurement of feed intake provides little additional genetic information over and above that provided by milk production and body weight. The principles outlined in this study have broader application than just to residual feed intake and apply to any trait that is defined as a linear function of other traits.