Abstract
A serious limitation to conventional data analysis is that the data refer mainly to elongated bodies. When three‐dimensional distortions are present, quantitative interpretation based only on the off‐diagonal elements of the conventionally rotated impedance tensor is inadequate, because these off‐diagonal elements are insensitive to the tensor trace. The impedance tensor eigenstate formulation proposed in the literature defines a complete set of parameters suitable for recognition of three‐dimensionality. Generally, though, the eigenvalues do not stand for the off‐diagonal elements of an impedance tensor measured in a physical coordinate system. It is shown how the eigenvalues are modified when the relationship between coordinate system rotations and the eigenstate formulation is clarified. A generalization of the conventional analysis results, but the rotation angle obtained is neither unique nor complete To improve the situation, two new analytical rotation angles are proposed. These angles define two complete intrinsic coordinate systems suitable for magnetotelluric data analysis when a general three‐dimensional structure is involved.