Vector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity

Abstract
Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is “leishmanization,” in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania. The generation of vaccines that protect against intracellular pathogens such as malaria, human immunodeficiency virus and leishmaniasis have met with limited success. A perplexing aspect of this failure as it relates to leishmaniasis is the knowledge that individuals typically get the disease only once, and that individuals who are experimentally infected with cultured parasites are protected against sand fly transmitted infection, thereby providing a “gold standard” for vaccine design. Many engineered, non-living vaccines have been developed to mimic the immune response observed in protected individuals and some of these have been shown to provide excellent protection against needle inoculation of Leishmania parasites in mice. However, very similar vaccine formulations adapted for use in people have failed to protect against natural exposure to infected sand fly bites. In the present study, we attempt to reconcile these long-standing differences, and to provide the critical correlates of immunity that will predict vaccination success against natural exposure.

This publication has 52 references indexed in Scilit: