Nuclear and Mitochondrial DNA Comparisons Reveal Extreme Rate Variation in the Molecular Clock

Abstract
The discovery that the rate of evolution of vertebrate mitochondrial DNA is rapid, compared to the rate for vertebrate nuclear DNA, has resulted in its widespread use in evolutionary studies. Comparison of mitochondrial and nuclear DNA divergences among echinoid and vertebrate taxa of similar ages indicates that the rapid rate of vertebrate mitochondrial DNA evolution is, in part, an artifact of a widely divergent rate of nuclear DNA evolution. This disparity in relative rates of mitochondrial and nuclear DNA divergence suggests that the controls and constraints under which the mitochondrial and nuclear genomes operate are evolving independently, and provides evidence that is independent of fossil dating for a robust rejection of a generalized molecular clock hypothesis of DNA evolution.