The Calcium-Sensing Receptor Affects Fat Accumulation via Effects on Antilipolytic Pathways in Adipose Tissue of Rats Fed Low-Calcium Diets

Abstract
Low-calcium intake is associated with increased risk of obesity, but the mechanism underlying this is not clear. We previously reported that the calcium-sensing receptor (CaSR) plays an important role in modulating the expression of rate-limiting lipolysis enzymes in human adipocytes. In the present study, rats were fed diets containing normal [0.50% (NC)], low [0.30% (LC)], or very low [0.15% (VLC)] calcium for 15 wk. Ten rats of each group were killed at wk 5, 10, and 15 of the intervention. The LC-fed rats had greater visceral fat mass, lower serum FFA and glycerol concentrations, and greater CaSR expression in white adipose tissue than did those fed the NC diet at wk 10 and 15. Hormone-sensitive lipase (HSL) and adipose TG lipase (ATGL) protein levels were lower, whereas fatty acid synthase mRNA in white adipose tissue was greater in the LC-fed rats compared with the NC-fed rats. These differences from the NC group were greater in the VLC group than in the LC group at wk 15. In vitro experiments showed that 1,25-dihydroxycholecalciferol stimulated the expression of CaSR through the nuclear vitamin D receptor (nVDR). This resulted in an antilipolytic effect by increasing intracellular calcium, decreasing the intracellular cAMP level, and downregulating HSL and ATGL protein expression in adipocytes. These effects were suppressed by either nVDR or CaSR small-interfering RNA. These results suggest that CaSR affects fat accumulation by mediating antilipolytic pathways in adipose tissue of rats fed low-calcium diets.

This publication has 44 references indexed in Scilit: