Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters

Abstract
SummarySARS-CoV-2 is the etiological agent of COVID-19. Most of SARS-CoV-2 carriers are assumed to exhibit no or mild non-specific symptoms. Thus, they may contribute to the rapid and mostly silent circulation of the virus among humans. Since SARS-CoV-2 can be detected in stool samples it has recently been proposed to monitor SARS-CoV-2 in wastewaters (WW) as a complementary tool to investigate virus circulation in human populations. In the present work we assumed that the quantification of SARS-CoV-2 genomes in wastewaters should correlate with the number of symptomatic or non-symptomatic carriers. To test this hypothesis, we performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw wastewater samples collected from several major wastewater treatment plant (WWTP) of the Parisian area. The study was conducted from 5 March to 23 April 2020, therefore including the lockdown period in France (since 17 March 2020). We confirmed that the increase of genome units in raw wastewaters accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genomes could be detected before the beginning of the exponential growth of the epidemic. As importantly, a marked decrease in the quantities of genomes units was observed concomitantly with the reduction in the number of new COVID-19 cases which was an expected consequence of the lockdown. A s a conclusion, this work suggests that a quantitative monitoring of SARS-CoV-2 genomes in wastewaters should bring important and additional information for an improved survey of SARS-CoV-2 circulation at the local or regional scale.