Cavitation and acoustic emission around laser-heated microparticles

Abstract
We studied transient cavitation bubble formation and acoustic emission around individual laser-heated microparticles using subnanosecond time-resolved microscopy. Microcavitation bubbles were observed as early as 0.5 ns after the particles were heated by a 30 ps laser pulse. The bubbles expanded to a few micrometers in size and collapsed on the time scale of 0.1–1 μsec. We discuss microcavitation as the origin of anomalously large photoacoustic effects and nonlinear optical responses observed in laser-heated colloidal suspensions, as well as a mechanism for cellular damage in biologic tissue containing pigment particles.