Herd immunity to helminth infection and implications for parasite control

Abstract
Despite much research on immunological responses to helminth parasites, knowledge of the dynamic interplay between levels of herd immunity in humans and the rates of exposure, establishment and mortality of parasites remains limited. We describe here a simple mathematical model for the population dynamics of helminth infections which mirrors the development of a degree of acquired immunity within populations which are genetically heterogeneous with respect to immunological responsiveness. We interpret observed patterns in the age-specific intensity of infection and attempt to understand the possible effects of control measures based on chemotherapy and vaccination. Mass chemotherapy can, in some circumstances, reduce the level of herd immunity such that average worm burdens in the adult age classes rise above their precontrol levels. When certain individuals or groups are predisposed to heavy infection, selective or targeted drug treatment can have significantly greater impact than mass or random application. Conversely, model predictions suggest that effective parasite control by vaccination (if and when vaccines become available) is difficult to achieve in communities that are genetically heterogeneous in their ability to mount protective responses to infection.