Abstract
The present work deals with inorganic-organic hybrid nanostructures capable of producing intense visible emission via upconversion (UC), downconversion (DC), and energy transfer (ET) processes which show the potential of the material as a luminescent solar collector (LSC), particularly to improve the efficiency of silicon solar cells. To achieve this, Gd2O3:Yb3+/Er3+ phosphor (average particle size∼35 nm) and a Eu(DBM)3Phen organic complex have been synthesized separately and then the hybrid structure has been developed using a simple mixing procedure. Intense UC emission (in the red, green, and blue regions) due to Er3+ is observed on near infrared (976 nm) excitation which shows color tunability with input pump power. In contrast, intense red emission of Eu3+ is observed on ultaviolet (UV) (355 nm) excitation. The feasibility of energy transfer from Er3+ ions to Eu3+ ions has also been noted. These excellent optical properties are retained even if the particles of the hybrid nanostructure are dispersed in liquid medium, which also makes it suitable for security ink purposes.