Atmospheric dry deposition of trace metals in the coastal region of Los Angeles, California, USA

Abstract
Emissions of trace metals to the atmosphere and subsequent deposition, either directly to a waterbody surface or indirectly to the watershed as washoff during rainfall, represents a potential source of contamination to surface waters near urban centers. The present study provides measurements of atmospheric concentrations of particle-bound trace metals, and it estimates the dry deposition mass loading of trace metals in coastal watersheds in the Los Angeles, California, USA, air basin. Coarse-particle atmospheric concentrations of metals were measured seasonally using a Noll Rotary Impactor at six urban sites and one nonurban site. Dry deposition fluxes were calculated by summing the product of air concentration and the theoretical deposition velocity for each particle size fraction. Mean fluxes at urban sites ranged from 3.2 to 9.1, 11 to 34, 3.8 to 8.8, 8.3 to 29, and 69 to 228 microg/m2/d for chromium, copper, nickel, lead, and zinc, respectively. Mean concentrations and fluxes were significantly higher at urban sites compared with the nonurban site, although differences between urban and nonurban sites were reduced when sampling took place within 5 d after rainfall. Dry deposition to watershed land surfaces was substantial, representing a potentially large source of trace metals based on comparisons with load estimates from stormwater runoff.

This publication has 20 references indexed in Scilit: