Abstract
Naked-eye observation of cloud cover has widely resisted automation. Replacement of human observation by instruments is an inexorable trend for the development of ground-based macroscopic cloud observation. In this paper, cloud covers from an all-sky imager (ASI) are compared with those from a meteorological observer (MO) through field experiments performed at three sites in China. The correlation coefficient between ASI and MO is 0.77 for all cases. The ASI cloud fractions have great agreement with MO for clear sky, overcast sky, and sky loaded with low- and middle-level clouds. About 78% of the ASI cases had deviations between ±1 tenth compared to MO cloud cover. High-level cloud (or aerosol) is the main reason causing this difference. It is partially due to MO, who takes aerosol as high, thin cloud. Another reason might be that ASI made a wrong estimation for high-level cloud (or aerosol) because of its detector and the cloud-determination algorithm. Distinguishing high, thin cloud from aerosol is a challenge, and is the main problem that needs to be resolved for future developments of ASI. A new, improved method is discussed at the end of this paper.