High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon

Abstract
We investigate the temperature distributions of Joule self-heated graphene nanoribbons (GNRs) with a spatial resolution finer than 100 nm by scanning thermal microscopy (SThM). The SThM probe is calibrated using the Raman G mode Stokes/anti-Stokes intensity ratio as a function of electric power applied to the GNR devices. From a spatial map of the temperature distribution, heat dissipation and transport pathways are investigated. By combining SThM and scanning gate microscopy data from a defected GNR, we observe hot spot formation at well-defined, localized sites.