The growth rate evolution versus substrate temperature and V/III ratio during GaN MBE using ammonia

Abstract
The growth rate evolution versus V/III ratio and substrate temperature was studied by means of optical reflectivity during MBE of GaN layers using NH3 as nitrogen source. The GaN desorption becomes observable at temperatures above 800°C and causes the reduction of growth rate accompanied with the surface roughening at temperatures above 850-870°C. Unlike GaAs, which evaporates in accordance with the action mass law, the desorption rate of GaN is found to be almost independent of V/III ratio within the N-rich growth conditions. The activation energy for GaN desorption during the growth is found to be (3.2±0.1)eV. This value is very close to the activation energy for free evaporation. At V/III ratio values exceeding 200 the GaN growth rate reduction caused by violation of the molecular flow regime is observed. The Mg-doped samples grown under these extreme conditions tend to have improved acceptor activation and thus p-type conductivity.