Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene

Abstract
TOR (target of rapamycin) protein kinases were identified in yeasts, mammals, and Drosophila as central controllers of cell growth in response to nutrient and growth factors. Here we show that Arabidopsis thaliana possesses a single TOR gene encoding a protein able to complex with yeast 12-kDa FK506-binding protein and rapamycin despite the insensitivity of Arabidopsis vegetative growth to rapamycin. Analysis of two T-DNA insertion mutants shows that disruption of AtTOR leads to the premature arrest of endosperm and embryo development. A T-DNA-mediated translational fusion of AtTOR with the GUS reporter gene allows us to show that AtTOR is expressed in primary meristem, embryo, and endosperm, but not in differentiated cells. The implications of these features for the plant TOR pathway are discussed.