Synthesis of Gold Nano- and Microplates in Hexagonal Liquid Crystals

Abstract
Single-crystalline gold nano- and microplates with triangular or hexagonal shapes are synthesized by reduction of HAuCl(4) in lyotropic liquid crystal (LLC) mainly made of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers and water after adding a small amount of capping agents, cetyltrimethylammonium bromide (CTAB) or tetrabutylammonium bromide (TBAB). During the growth of such plates, capping agents play the crucial role. It is found that there is an optimal value of CTAB or TBAB concentration for producing microplates. The selective adsorption of CTAB or TBAB on certain crystallographic facets may be the key point of the supposed mechanism. Although LLC does not really act as a template, it provides an ordered structure confining CTAB as well as the nascent metal nuclei, which enhances the oriented attachment of nuclei and thus the consequent growth of single-crystal plates.