Fatigue Life Predictions of Smooth and Notched Specimens Based on Fracture Mechanics

Abstract
An elastic plastic fracture mechanics solution for short fatigue cracks in smooth and notched specimens is presented which admits plasticity by replacing the conventional stress term with a strain term and accounts for the propagation of very short cracks by the introduction of an effective crack length which is equal to the actual length increased by length l0, the length constant l0 is characteristic of the material and material condition and is calculated from the smooth specimen endurance limit and the long crack threshold stress intensity. Crack growth results for cracks in both elastic and plastic strain fields of notched specimens when interpreted in terms of this strain based intensity factor showed excellent agreement with elastic long crack data. This intensity factor when combined with a propagation model that includes all stages of crack growth also successfully predicted the total fatigue life of the smooth and notched specimens studied here. The predicted propagation life of elliptical and circular notched specimens is in all cases within 50 percent of the actual fatigue lives.