A Novel Gene Involved in Regulating the Flagellar Gene Cascade inProteus mirabilis

Abstract
In this study, we identified a transposon insertion in a novel gene, designated disA, that restored swarming motility to a putrescine-deficient speA mutant of Proteus mirabilis. A null allele in disA also increased swarming in a wild-type background. The DisA gene product was homologous to amino acid decarboxylases, and its role in regulating swarming was investigated by examining the expression of genes in the flagellar cascade. In a disA mutant background, we observed a 1.4-fold increase in the expression of flhDC, which encodes FlhD(2)C(2), the master regulator of the flagellar gene cascade. However, the expressions of class 2 (fliA, flgM) and class 3 (flaA) genes were at least 16-fold higher in the disA background during swarmer cell differentiation. Overexpression of DisA on a high-copy-number plasmid did not significantly decrease flhDC mRNA accumulation but resulted in a complete block in mRNA accumulation for both fliA and flaA. DisA overexpression also blocked swarmer cell differentiation. The disA gene was regulated during the swarming cycle, and a single-copy disA::lacZ fusion exhibited a threefold increase in expression in swarmer cells. Given that DisA was similar to amino acid decarboxylases, a panel of decarboxylated amino acids was tested for effects similar to DisA overexpression, and phenethylamine, the product of phenylalanine decarboxylation, was capable of inhibiting both swarming and the expression of class 2 and class 3 genes in the flagellar regulon. A DisA-dependent decarboxylated amino acid may inhibit the formation of active FlhD(2)C(2) heterotetramers or inhibit FlhD(2)C(2) binding to DNA.

This publication has 30 references indexed in Scilit: