A compliant, underactuated hand for robust manipulation

Abstract
This paper introduces the iRobot-Harvard-Yale (iHY) Hand, an underactuated hand driven by five actuators that is capable of performing a wide range of grasping and in-hand repositioning tasks. This hand was designed to address the need for a durable, inexpensive, moderately dexterous hand suitable for use on mobile robots. The primary focus of this paper will be on the novel simplified design of the iHY Hand, which was developed by choosing a set of target tasks around which the hand was optimized. Particular emphasis is placed on the development of underactuated fingers that are capable of both firm power grasps and low-stiffness fingertip grasps using only the compliant mechanics of the fingers. Experimental results demonstrate successful grasping of a wide range of target objects, the stability of fingertip grasping, and the ability to adjust the force exerted on grasped objects using high-impedance actuators and underactuated fingers.

This publication has 37 references indexed in Scilit: