Permittivity and Loss Tangent Characterization for Garment Antennas Based on a New Matrix-Pencil Two-Line Method

Abstract
The emergence of wearable antennas to be integrated into garments has revealed the need for a careful electromagnetic characterization of textile materials. Therefore, we propose in this paper a new matrix-pencil two-line method that removes perturbations in the calculated effective permittivity and loss tangent which are caused by imperfect deembedding and inhomogeneities of the textile microstrip line structure. The approach has been rigorously validated for high-frequency laminates by comparing measured and simulated data for the resonance frequency of antennas designed using the calculated parameters. The method has been successfully applied to characterize the permittivity and loss tangent of a variety of textile materials and up to a frequency of 10 GHz. Furthermore it is shown that the use of electrotextiles in antenna design influences the effective substrate permittivity.

This publication has 12 references indexed in Scilit: