LVDS I/O interface for Gb/s-per-pin operation in 0.35-μm CMOS

Abstract
This paper presents the design and the implementation of input/output (I/O) interface circuits for Gb/s-per-pin operation, fully compatible with low-voltage differential signaling (LVDS) standard. Due to the differential transmission technique and the low voltage swing, LVDS allows high transmission speeds and low power consumption at the same time. In the proposed transmitter, the required tolerance on the dc output levels was achieved over process, temperature, and supply voltage variations with neither external components nor trimming procedures, by means of a closed-loop control circuit and an internal voltage reference. The proposed receiver implements a dual-gain-stage folded-cascode architecture which allows a 1.2-Gb/s transmission speed with the minimum common-mode and differential voltage at the input. The circuits were implemented in a 3.3-V 0.35-/spl mu/m CMOS technology in a couple of test chips. Transmission operations up to 1.2 Gb/s with random data patterns and up to 2 Gb/s in asynchronous mode were demonstrated. The transmitter and receiver pad cells exhibit a power consumption of 43 and 33 mW, respectively.

This publication has 3 references indexed in Scilit: