Abstract
Electron-ion dynamics in a perpendicular magnetosonic shock wave in a high Mach number regime is studied by using the particle-in-cell simulation. It is shown that in the shock transition layer nonlinear evolution of two-stream instabilities plays an important role on the electron rapid heating and acceleration. As the shock Mach number greatly exceeds the critical Mach number, a series of large-amplitude, coherent electrostatic waves with the electron holes in phase space are excited by the two-stream instability between the reflected ions and the incident electrons in the shock transition layer. As the incident electrons are decelerated by the instability, other electrostatic waves grow in time by another two-stream instability between the incident ions and the decelerated incident electrons. The dynamic timescale of these instabilities is of the order of ω, where ωpe is the plasma frequency. The nonlinear interaction of these waves leads to the strong electron heating as well as the nonthermal high-energy electron acceleration in the shock transition layer.