Abstract
The global carbon (C) cycle is changing, as evident from abrupt increases in atmospheric CO2. These changes have sparked interest in agricultural soils as potential repositories for excess atmospheric C. Our perspective on soil C, therefore, has shifted: once, we focused mainly on how soil C affected productivity within agroecosystems; now we see also how C dynamics in agricultural soils exert influences far beyond the farm. We have long used soil C as an indicator of soil quality; now we may want to use soil C also as a broader indicator of ecosystem response. To prompt further discussion, I offer some tentative thoughts about how we might use soil C as an indicator on a changing earth. They include: using soil C to measure changes across time, not only across space; devising more sensitive measures of soil C change; quantifying soil C across four dimensions; measuring the nature of C, as well as its amount; using soil C alongside other indicators; finding better ways of admitting our uncertainty; establishing long-term sites for our successors to measure soil C change; and following flows of C past the farm fences. Recent worries about global warming have focused our attention on “sequestering” soil C to remove atmospheric CO2. That aim may be worthy, but perhaps too narrow; a broader goal might be to ensure the productivity, permanence, and health of our agroecosystems and adjacent environments – and use C storage as a measure of progress toward that goal. Key words: Soil organic matter, global carbon cycle, carbon sequestration, global change