Defective DNA Replication Impairs Mitochondrial Biogenesis In Human Failing Hearts

Abstract
Rationale: Mitochondrial dysfunction plays a pivotal role in the development of heart failure. Animal studies suggest that impaired mitochondrial biogenesis attributable to downregulation of the peroxisome proliferator-activated receptor γ coactivator (PGC)-1 transcriptional pathway is integral of mitochondrial dysfunction in heart failure. Objective: The study sought to define mechanisms underlying the impaired mitochondrial biogenesis and function in human heart failure. Methods and Results: We collected left ventricular tissue from end-stage heart failure patients and from nonfailing hearts (n=23, and 19, respectively). The mitochondrial DNA (mtDNA) content was decreased by >40% in the failing hearts, after normalization for a moderate decrease in citrate synthase activity (PPPConclusions: Mitochondrial biogenesis is severely impaired as evidenced by reduced mtDNA replication and depletion of mtDNA in the human failing heart. These defects are independent of the downregulation of the PGC-1 expression suggesting novel mechanisms for mitochondrial dysfunction in heart failure.