Abstract
Juvenile phenotypes and fitness as indicated by survival were compared for naturally produced steelhead (Oncorhynchus mykiss), a new local hatchery stock, and an old nonlocal hatchery stock on the Hood River, Oregon, U.S.A. Although the new hatchery stock and the naturally produced fish came from the same parent gene pool, they differed significantly at every phenotype measured except saltwater age. The characteristics of the new hatchery stock were similar to those of the old hatchery stock. Most of the phenotypic differences were probably environmentally caused. Although such character changes would not be inherited, they may influence the relative fitness of the hatchery and natural fish when they are in the same environment, as selection responds to phenotypic distributions. A difference in fitness between the new hatchery stock and naturally produced fish was indicated by significant survival differences. Acclimation of the new hatchery stock in a “seminatural” pond before release was associated with a further decrease in relative smolt-to-adult survival with little increase in phenotypic similarity between the natural and hatchery fish. These results suggest that modified selection begins immediately in the first generation of a new hatchery stock and may provide a mechanism for genetic change.