In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)

Abstract
Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique that extends the capabilities of OCT to enable mapping of vasculature networks. The technique is achieved as a processing step on OCT intensity images that does not require any modification to existing OCT hardware. In this paper we apply the cmOCT processing technique to in vivo human imaging of the volar forearm. We illustrate that cmOCT can produce maps of the microcirculation that clearly follow the accepted anatomical structure. We demonstrate that the technique can extract parameters such as capillary density and vessel diameter. These parameters are key clinical markers for the early changes associated with microvascular diseases. Overall the presented results show that cmOCT is a powerful new tool that generates microcirculation maps in a safe non-invasive, non-contact technique which has clear clinical applications.