MicroRNA dysregulation in gastric cancer: a new player enters the game

Abstract
Gastric carcinogenesis is a multistep process involving genetic and epigenetic alteration of protein-coding proto-oncogenes and tumor-suppressor genes. Recent discoveries have shed new light on the involvement of a class of noncoding RNA known as microRNA (miRNA) in gastric cancer. A substantial number of miRNAs show differential expression in gastric cancer tissues. Genes coding for these miRNAs have been characterized as novel proto-oncogenes and tumor-suppressor genes based on findings that these miRNAs control malignant phenotypes of gastric cancer cells. In this connection, miRNA dysregulation promotes cell-cycle progression, confers resistance to apoptosis, and enhances invasiveness and metastasis. Moreover, certain polymorphisms in miRNA genes are associated with increased risks for atrophic gastritis and gastric cancer, whereas circulating levels of miRNAs may serve as biomarkers for early diagnosis. Several miRNAs have also been shown to correlate with gastric cancer progression, and thus may be used as prognostic markers. Elucidating the biological aspects of miRNA dysregulation may help us better understand the pathogenesis of gastric cancer and promote the development of miRNA-directed therapeutics against this deadly disease.