Coupled-mode theory of nonlinear propagation in multimode and single-mode fibers: envelope solitons and self-confinement

Abstract
A set of equations describing pulse propagation in multimode optical fibers in the presence of an intensity-dependent refractive index is derived by taking advantage of the coupled-mode theory usually employed for describing the influence of fiber imperfections on linear propagation. This approach takes into account in a natural way the role of the waveguide structure in terms of the propagation constants and the spatial configurations of the propagating modes and can be applied to the most general refractive-index distribution. The conditions under which soliton propagation and longitudinal self-confinement can be achieved are examined.