Tetramethylphenylenediamine protects the isolated heart against ischaemia‐induced apoptosis and reperfusion‐induced necrosis

Abstract
Cytochrome c when released from mitochondria into cytosol triggers assembly of the apoptosome resulting in caspase activation. Recent evidence suggests that reduced cytochrome c is unable to activate the caspase cascade. In this study, we investigated whether a chemical reductant of cytochrome c, N,N,N',N'-tetramethylphenylene-1,4-diamine (TMPD), which we have previously shown to block cytochrome c-induced caspase activation, could prevent ischaemia-induced apoptosis in the rat perfused heart. The Langendorff-perfused rat hearts were pretreated with TMPD and subjected to stop-flow ischaemia or ischaemia/reperfusion. The activation of caspases (measured as DEVD-p-nitroanilide-cleaving activity), nuclear apoptosis of cardiomyocytes (measured by dUTP nick end labelling assay), mitochondrial and cytosolic levels of cytochrome c (measured spectrophotometrically and by elisa), and reperfusion-induced necrosis (measured as the activity of creatine kinase released into perfusate) were assessed. We found that perfusion of the hearts with TMPD strongly inhibited ischaemia- or ischaemia/reperfusion-induced activation of caspases and partially prevented nuclear apoptosis in cardiomyocytes. TMPD did not prevent ischaemia- or ischaemia/reperfusion-induced release of cytochrome c from mitochondria into cytosol. TMPD also inhibited ischaemia/reperfusion-induced necrosis. These results suggest that TMPD or related molecules might be used to protect the heart against damage induced by ischaemia/reperfusion. The mechanism of this protective effect of TMPD probably involves electron reduction of cytochrome c (without decreasing its release) which then inhibits the activation of caspases.

This publication has 26 references indexed in Scilit: