Abstract
The hypothesis that incomplete resorption of osteons in an autogenous cortical bone graft may limit its replacement by new bone regeneration was explored by implanting a hydroxyapatite replica of a coral skeletal structure into bone gaps. This implant contained channels and interconnections similar to those in osteon-evacuated bone grafts. In 6 implanted mandibular defects in dogs, two of which were examined at two, 4, and 6 months, 11 percent, 46 percent, and 88 percent of the implant areas were filled with regenerated bone. The regenerated bone was a woven type at two months, but changed to a lamellar type by 6 months. In two implanted defects examined at 12 months, biodegradation of 29 percent of the implant had occurred. The bone regeneration was physiological, the implant was biocompatible, and the biodegradation began after the bone had regenerated.