Ecological Contexts of Index Cases and Spillover Events of Different Ebolaviruses

Abstract
Ebola virus disease afflicts both human and animal populations and is caused by four ebolaviruses. These different ebolaviruses may have distinct reservoir hosts and ecological contexts that determine how, where, and when different ebolavirus spillover events occur. Understanding these virus-specific relationships is important for preventing transmission of ebolaviruses from wildlife to humans. We examine the ecological contexts surrounding 34 human index case infections of ebolaviruses from 1976–2014. Determining possible sources of spillover from wildlife, characterizing the environment of each event, and creating ecological niche models to estimate habitats suitable for spillover, we find that index case infections of two ebolaviruses, Ebola virus and Sudan virus, have occurred under different ecological contexts. The index cases of Ebola virus infection are more associated with tropical evergreen broadleaf forests and consuming bushmeat than the cases of Sudan virus. Given these differences, we emphasize caution when generalizing across different ebolaviruses and that location and virus-specific ecological knowledge will be essential to unravelling how human and animal behavior lead to the emergence of Ebola virus disease. Multiple Ebola virus disease outbreaks have occurred over the past 40 years, yet we still do not know the geographical distributions, definitive host species, and suitable habitats for animal-to-human transmission of different ebolaviruses. Each Ebola virus disease outbreak has started with at least one transmission event from a wildlife host to a human, also known as a spillover event. While researchers have studied these events in regards to Ebola virus disease outbreaks, many studies neglect that there are multiple ebolaviruses and that these viruses may differ in their spillover events. We characterize the specific ecological contexts of different ebolavirus spillover events based on recorded index case infections. Comparing the environmental contexts of these cases and using ecological niche modelling, we find that two ebolaviruses have different suitable habitats for spillover. The different habitats and contexts of the two ebolaviruses involved in the majority of outbreaks, Ebola virus and Sudan virus, indicate that we must further investigate virus-specific differences in ebolaviruses and their hosts.
Funding Information
  • Division of Intramural Research, National Institute of Allergy and Infectious Diseases