The LZIP: A Bayesian Latent Factor Model for Correlated Zero-Inflated Counts

Abstract
Motivated by a study of molecular differences among breast cancer patients, we develop a Bayesian latent factor zero-inflated Poisson (LZIP) model for the analysis of correlated zero-inflated counts. The responses are modeled as independent zero-inflated Poisson distributions conditional on a set of subject-specific latent factors. For each outcome, we express the LZIP model as a function of two discrete random variables: the first captures the propensity to be in an underlying "at-risk" state, while the second represents the count response conditional on being at risk. The latent factors and loadings are assigned conditionally conjugate gamma priors that accommodate overdispersion and dependence among the outcomes. For posterior computation, we propose an efficient data-augmentation algorithm that relies primarily on easily sampled Gibbs steps. We conduct simulation studies to investigate both the inferential properties of the model and the computational capabilities of the proposed sampling algorithm. We apply the method to an analysis of breast cancer genomics data from The Cancer Genome Atlas.