Abstract
Increased selectivity, response speed, and sensitivity in the chemical and biological determinations of gases and liquids are of great interest. Particular attention is paid to polymeric sensor materials, which are applicable to sensors exploiting various energy transduction principles, such as radiant, electrical, mechanical, and thermal energy. Ideally, numerous functional parameters of sensor materials can be tailored to meet specific needs using rational design approaches. However, increasing the structural and functional complexity of polymeric sensor materials makes it more difficult to predict the desired properties. Combinatorial and high-throughput methods have had an impact on all areas of research on polymer-based sensor materials including homo- and copolymers, formulated materials, polymeric structures with engineered morphology, and molecular shape-recognition materials. Herein we report on the state-of-the-art, the development trends, and the remaining knowledge gaps in the area of combinatorial polymeric sensor materials design.