Abstract
Osteopontin is a predominant integrin binding protein of bone and its expression has been shown to be induced by mechanical stimuli within osteoblasts (Toma et al. [1997] J. Bone Miner. Res. 12:1626–1636). The present studies examined if the cell adhesion would mimic the mechano-transduction that stimulated opn mRNA expression and whether integrin receptors were involved in these processes. Osteopontin mRNA expression was induced three- to four-fold, 24 hours after embryonic chicken calvaria osteoblast attachment to fibronectin (FN), however no induction was observed if the cells were plated on tissue culture plastic alone. Osteopontin mRNA induction in response to cell attachment on FN was dependent on new protein synthesis and the activation of a tyrosine protein kinase(s) but unlike mechano-induction was independent of the maintenance of the cell's microfilament structure. Integrin receptor(s) were shown to be involved in mediating the signal transduction processes of both cell attachment and mechanical stimulation since incubation of osteoblasts with the integrin binding peptide RGDS partially blocked the induction of opn expression in response to both stimuli. Interestingly, incubation of the osteoblasts that were adherent on tissue culture plastic alone with the RGDS peptide lead to an induction in opn expression suggesting that integrin occupancy by itself was sufficient to initiate the signal transduction process that induced opn expression. In order to assess the role of integrin occupancy vs. focal adhesion complex formation that accompanies cell attachment, in the signal transduction process that induces opn expression, receptor clustering was stimulated pharmacologically with bombesin or lysophasphatidic acid in osteoblasts attached to tissue culture plastic. Neither compound in the absence of occupancy of the integrin receptors was capable of stimulating opn expression in attached cells, however if the cells were placed in suspension pharmacological mediation of receptor clustering and integrin occupancy were additive in their effect of inducing opn expression. These data demonstrate that induction of opn expression by mechanical stimuli and cell attachment are commonly mediated through integrin receptor(s). However, when cells are attached receptor clustering alone which accompanies focal adhesion formation was incapable of mediating signal transduction suggesting that receptor occupancy was a prerequisite to the signal transduction process that leads to the induction of opn mRNA expression. J. Cell. Biochem. 70:376–390.