CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage

Abstract
Arrays of CuO nanostructures, including nanorods and nanosheets, supported on a Cu substrate have been rationally fabricated from their morphology-controlled Cu2(OH)3NO3 precursors by thermal annealing. The as-prepared CuO samples can be directly used as integrated electrodes for lithium-ion batteries without the addition of other ancillary materials such as carbon black or a binder to enhance electrode conductivity and cycling stability. The unique nanostructural features endower them excellent electrochemical performance as demonstrated by high capacities of 450–650 mAh g−1 at 0.5–2 C and almost 100% capacity retention over 100 cycles after the second cycle.

This publication has 38 references indexed in Scilit: