Raman microscopy for dynamic molecular imaging of living cells

Abstract
We demonstrate dynamic imaging of molecular distribution in unstained living cells using Raman scattering. By combining slit-scanning detection and optimizing the excitation wavelength, we imaged the dynamic molecular distributions of cytochrome c, protein beta sheets, and lipids in unstained HeLa cells with a temporal resolution of 3minutes. We found that 532-nm excitation can be used to generate strong Raman scattering signals and to suppress autofluorescence that typically obscures Raman signals. With this technique, we reveal time-resolved distributions of cytochrome c and other biomolecules in living cells in the process of cytokinesis without the need for fluorescent labels or markers.

This publication has 18 references indexed in Scilit: