Spectral Decomposition of Two-Dimensional Atmospheric Fields on Limited-Area Domains Using the Discrete Cosine Transform (DCT)

Abstract
For most atmospheric fields, the larger part of the spatial variance is contained in the planetary scales. When examined over a limited area, these atmospheric fields exhibit an aperiodic structure, with large trends across the domain. Trying to use a standard (periodic) Fourier transform on regional domains results in the aliasing of large-scale variance into shorter scales, thus destroying all usefulness of spectra at large wavenumbers. With the objective of solving this particular problem, the authors have evaluated and adopted a spectral transform called the discrete cosine transform (DCT). The DCT is a widely used transform for compression of digital images such as MPEG and JPEG, but its use for atmospheric spectral analysis has not yet received widespread attention. First, it is shown how the DCT can be employed for producing power spectra from two-dimensional atmospheric fields and how this technique compares favorably with the more conventional technique that consists of detrending the data before applying a periodic Fourier transform. Second, it is shown that the DCT can be used advantageously for extracting information at specific spatial scales by spectrally filtering the atmospheric fields. Examples of applications using data produced by a regional climate model are displayed. In particular, it is demonstrated how the 2D-DCT spectral decomposition is successfully used for calculating kinetic energy spectra and for separating mesoscale features from large scales.