Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications

Abstract
Using time-resolved photoluminescence and transient absorption measurements at room temperature, we report excitation-intensity-dependent photocarrier recombination processes in thin films made from the organo-metal halide perovskite semiconductor CH3NH3PbI3 for solar-cell applications. The photocarrier dynamics are well described by a simple rate equation including single-carrier trapping and electron–hole radiative recombination. This result provides clear evidence that the free-carrier model is better than the exciton model for interpreting the optical properties of CH3NH3PbI3. The observed large two-carrier recombination rate suggests the promising potential of perovskite semiconductors for optoelectronic device applications. Our findings provide the information about the dynamical behaviors of photoexcited carriers that is needed for developing high-efficiency perovskite solar cells.
Funding Information
  • Japan Science and Technology Agency
  • Sumitomo Electric Industries Group CSR Foundation