Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency

Abstract
Intercell interference limits the capacity of wireless networks. To mitigate this interference we explore coherently coordinated transmission (CCT) from multiple base stations to each user. To treat users fairly, we explore equal rate (ER) networks. We evaluate the downlink network efficiency of CCT as compared to serving each user with single base transmission (SBT) with a separate base uniquely assigned to each user. Efficiency of ER networks is measured as total network throughput relative to the number of network antennas at 10% user outage. Efficiency is compared relative to the baseline of single base transmission with power control, (ER-SBT), where base antenna transmissions are not coordinated and apart from power control and the assignment of 10% of the users to outage, nothing is done to mitigate interference. We control the transmit power of ER systems to maximise the common rate for ER-SBT, ER-CCT based on zero forcing, and ER-CCT employing dirty paper coding. We do so for (no. of transmit antennas per base, no. of receive antennas per user) equal to (1,1), (2,2) and (4,4). We observe that CCT mutes intercell interference enough, so that enormous spectral efficiency improvement associated with using multiple antennas in isolated communication links occurs as well for the base-to-user links in a cellular network.