Abstract
Expression of the Semliki Forest virus p62/E2 protein was studied in the polarized epithelial cell line Madin-Darby canine kidney (MDCK). After infection this transmembrane protein, together with the other spike subunit E1, accumulates at the basolateral surface of MDCK cells (Fuller, S. D., C.-H. von Bonsdorff, and K. Simons, 1985, EMBO (Eur. Mol. Biol. Organ.) J., 4:2475-2485). The cDNAs encoding truncated forms of the protein were used to stably transform MDCK cells to examine the role of subunit oligomerization (E1-E2) and the cytoplasmic domain of p62/E2 in directed transport to the basolateral surface. The biochemical characteristics and polarity of the expressed proteins were studied using cell monolayers grown on nitrocellulose filters. A wild-type form of p62/E2, in the absence of E1, and two forms having either 15 or 3 of the wild-type 31-amino acid carboxyl cytoplasmic domain were all localized to the basolateral surface. These results indicate that the cytoplasmic domain of E2 does not contain the information essential for directed transport to the plasma membrane, and imply that this information resides in either the lumenal and/or membrane-spanning segments of this transmembrane protein.