A Tonic Hyperpolarization Underlying Contrast Adaptation in Cat Visual Cortex

Abstract
The firing rate responses of neurons in the primary visual cortex grow with stimulus contrast, the variation in the luminance of an image relative to the mean luminance. These responses, however, are reduced after a cell is exposed for prolonged periods to high-contrast visual stimuli. This phenomenon, known as contrast adaptation, occurs in the cortex and is not present at earlier stages of visual processing. To investigate the cellular mechanisms underlying cortical adaptation, intracellular recordings were performed in the visual cortex of cats, and the effects of prolonged visual stimulation were studied. Surprisingly, contrast adaptation barely affected the stimulus-driven modulations in the membrane potential of cortical cells. Moreover, it did not produce sizable changes in membrane resistance. The major effect of adaptation, evident both in the presence and in the absence of a visual stimulus, was a tonic hyperpolarization. Adaptation affects a class of synaptic inputs, most likely excitatory in nature, that exert a tonic influence on cortical cells.