Typical Solution Time for a Vertex-Covering Algorithm on Finite-Connectivity Random Graphs

Abstract
We analytically describe the typical solution time needed by a backtracking algorithm to solve the vertex-cover problem on finite-connectivity random graphs. We find two different transitions: The first one is algorithm dependent and marks the dynamical transition from linear to exponential solution times. The second one gives the maximum computational complexity, and is found exactly at the threshold where the system undergoes an algorithm-independent phase transition in its solvability. Analytical results are corroborated by numerical simulations.